Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Carbohydr Res ; 529: 108832, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2316161

ABSTRACT

Heparin-like sulfated polysaccharide, acharan sulfate, was purified from the mucus of an African giant snail with unique sulfated glycosaminoglycans (GAGs). This study reported on finding novel and safe heparin resources from Achatina fulica for further use as well as easy isolation and purification of the active fraction from the initial raw material. Its structure was characterised by a strong-anion exchange combined with high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) spectroscopy. The results indicated that the potential acharan sulfate fraction is a glycosaminoglycan composed of several repeating disaccharide units, namely, of →4)-α-IdoA(2S)(1→4)-α-GlcNAc/GlcNAc(6S)/GlcNSO3(6S)(1→, and hence, presents heterogeneity regarding negative net charge density. Furthermore, the heparinase digests inhibit the binding of SARS-CoV-2 spike protein to the ACE2 receptor. In summary, the acharan sulfate presented in this work has shown its great potential for application in the preparation of sulfated polysaccharides as an alternative to heparin with important biological activity.


Subject(s)
COVID-19 , Heparin , Animals , Humans , Heparin/chemistry , Sulfates , SARS-CoV-2 , Glycosaminoglycans/pharmacology , Glycosaminoglycans/chemistry , Polysaccharides/chemistry , Snails/chemistry , Snails/metabolism , Mucus/metabolism
2.
Carbohydr Polym ; 295: 119818, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-1914200

ABSTRACT

Heparin, an old but first-line anticoagulant, has been used over a century. It is a heterogeneous, linear, highly sulfated, anionic glycosaminoglycan with a broad distribution in relative molecular weight and charge density. These structural properties allow heparin to selectively interact with multiple proteins, leading to heparin's various pharmacological functions, such as anticoagulant, anti-viral, anti-tumor and anti-inflammatory activities. Clinical data suggest that unfractionated heparin or low molecule weight heparin could decrease mortality in COVID-19 patients with sepsis-induced hypercoagulation through the anticoagulant, anti-viral and anti-inflammatory activities of these drugs. Thus, the non-anticoagulant activity of heparin has again aroused attention. This review highlights recent advances in the preparation of heparin-derived drugs and clinical research on its non-anticoagulant properties over the past decade, to further the development and utilization of these important drugs.


Subject(s)
COVID-19 Drug Treatment , Heparin , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anticoagulants/chemistry , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Heparin/chemistry , Heparin/pharmacology , Heparin/therapeutic use , Heparin, Low-Molecular-Weight/chemistry , Heparin, Low-Molecular-Weight/pharmacology , Heparin, Low-Molecular-Weight/therapeutic use , Humans
3.
Biochimie ; 198: 109-140, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1767919

ABSTRACT

Heparinases are enzymes that selectively cleave heparin and heparan sulfate chains, via cleavage of the glycosidic linkage between hexosamines and uronic acids, producing disaccharide and oligosaccharide products. While heparin is well known as an anti-coagulant drug, heparin and heparan sulfate are also involved in biological processes such as inflammation, cancer and angiogenesis and viral and bacterial infections and are of growing interest for their therapeutic potential. Recently, potential roles of heparin and heparan sulfate in relation to COVID-19 infection have been highlighted. The ability of heparinases to selectively cleave heparin chains has been exploited industrially to produce low molecular weight heparin, which has replaced heparin in several clinical applications. Other applications of heparinases include heparin and heparan sulfate structural analysis, neutralisation of heparin in blood and removal of the inhibitory effect of heparin on various enzymes. Heparinases are known to inhibit neovascularization and heparinase III is of interest for treating cancer and inhibiting tumour cell growth. Heparinase activity, first isolated from Pedobacter heparinus, has since been reported from several other microorganisms. Significant progress has been made in the production, characterisation and improvement of microbial heparinases in response to application demands in terms of heparinase yield and purity, which is likely to extend their usefulness in various applications. This review focuses on recent developments in the identification, characterisation and improvement of microbial heparinases and their established and emerging industrial, clinical and therapeutic applications.


Subject(s)
COVID-19 , Heparin/chemistry , Heparin Lyase/chemistry , Heparitin Sulfate , Humans , Oligosaccharides
4.
Viruses ; 14(1)2021 12 24.
Article in English | MEDLINE | ID: covidwho-1580407

ABSTRACT

Only a mere fraction of the huge variety of human pathogenic viruses can be targeted by the currently available spectrum of antiviral drugs. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak has highlighted the urgent need for molecules that can be deployed quickly to treat novel, developing or re-emerging viral infections. Sulfated polysaccharides are found on the surfaces of both the susceptible host cells and the majority of human viruses, and thus can play an important role during viral infection. Such polysaccharides widely occurring in natural sources, specifically those converted into sulfated varieties, have already proved to possess a high level and sometimes also broad-spectrum antiviral activity. This antiviral potency can be determined through multifold molecular pathways, which in many cases have low profiles of cytotoxicity. Consequently, several new polysaccharide-derived drugs are currently being investigated in clinical settings. We reviewed the present status of research on sulfated polysaccharide-based antiviral agents, their structural characteristics, structure-activity relationships, and the potential of clinical application. Furthermore, the molecular mechanisms of sulfated polysaccharides involved in viral infection or in antiviral activity, respectively, are discussed, together with a focus on the emerging methodology contributing to polysaccharide-based drug development.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/pharmacology , COVID-19/epidemiology , Polysaccharides/pharmacology , Viruses/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Biological Products/chemical synthesis , Biological Products/chemistry , Heparin/chemical synthesis , Heparin/chemistry , Heparin/pharmacology , Humans , Polysaccharides/chemistry , SARS-CoV-2/drug effects , Structure-Activity Relationship , Sulfates/chemistry , Sulfates/pharmacology , Virus Diseases/drug therapy , Virus Internalization/drug effects , Viruses/pathogenicity , COVID-19 Drug Treatment
5.
J Biol Chem ; 298(2): 101507, 2022 02.
Article in English | MEDLINE | ID: covidwho-1587357

ABSTRACT

Heparin, a naturally occurring glycosaminoglycan, has been found to have antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus of COVID-19. To elucidate the mechanistic basis for the antiviral activity of heparin, we investigated the binding of heparin to the SARS-CoV-2 spike glycoprotein by means of sliding window docking, molecular dynamics simulations, and biochemical assays. Our simulations show that heparin binds at long, positively charged patches on the spike glycoprotein, thereby masking basic residues of both the receptor-binding domain (RBD) and the multifunctional S1/S2 site. Biochemical experiments corroborated the simulation results, showing that heparin inhibits the furin-mediated cleavage of spike by binding to the S1/S2 site. Our simulations showed that heparin can act on the hinge region responsible for motion of the RBD between the inactive closed and active open conformations of the spike glycoprotein. In simulations of the closed spike homotrimer, heparin binds the RBD and the N-terminal domain of two adjacent spike subunits and hinders opening. In simulations of open spike conformations, heparin induces stabilization of the hinge region and a change in RBD motion. Our results indicate that heparin can inhibit SARS-CoV-2 infection by three mechanisms: by allosterically hindering binding to the host cell receptor, by directly competing with binding to host heparan sulfate proteoglycan coreceptors, and by preventing spike cleavage by furin. Furthermore, these simulations provide insights into how host heparan sulfate proteoglycans can facilitate viral infection. Our results will aid the rational optimization of heparin derivatives for SARS-CoV-2 antiviral therapy.


Subject(s)
COVID-19/metabolism , Heparin/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Binding Sites , Heparin/chemistry , Heparin/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , COVID-19 Drug Treatment
6.
Int J Mol Sci ; 22(18)2021 Sep 17.
Article in English | MEDLINE | ID: covidwho-1430892

ABSTRACT

Previous studies reported on the broad-spectrum antiviral function of heparin. Here we investigated the antiviral function of magnesium-modified heparin and found that modified heparin displayed a significantly enhanced antiviral function against human adenovirus (HAdV) in immortalized and primary cells. Nuclear magnetic resonance analyses revealed a conformational change of heparin when complexed with magnesium. To broadly explore this discovery, we tested the antiviral function of modified heparin against herpes simplex virus type 1 (HSV-1) and found that the replication of HSV-1 was even further decreased compared to aciclovir. Moreover, we investigated the antiviral effect against the new severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and measured a 55-fold decreased viral load in the supernatant of infected cells associated with a 38-fold decrease in virus growth. The advantage of our modified heparin is an increased antiviral effect compared to regular heparin.


Subject(s)
Antiviral Agents/pharmacology , Heparin/pharmacology , Magnesium Chloride/pharmacology , Acyclovir/pharmacology , Adenoviruses, Human/drug effects , Adenoviruses, Human/physiology , Animals , Antiviral Agents/chemistry , CHO Cells , Cell Line, Tumor , Chlorocebus aethiops , Cricetulus , Drug Evaluation, Preclinical , Fibroblasts , Heparin/chemistry , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/physiology , Humans , Magnesium Chloride/chemistry , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Molecular Structure , Primary Cell Culture , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Structure-Activity Relationship , Vero Cells , Viral Load/drug effects , Virus Replication/drug effects
7.
Nature ; 596(7873): 565-569, 2021 08.
Article in English | MEDLINE | ID: covidwho-1356565

ABSTRACT

Vaccine-induced immune thrombotic thrombocytopaenia (VITT) is a rare adverse effect of COVID-19 adenoviral vector vaccines1-3. VITT resembles heparin-induced thrombocytopaenia (HIT) in that it is associated with platelet-activating antibodies against platelet factor 4 (PF4)4; however, patients with VITT develop thrombocytopaenia and thrombosis without exposure to heparin. Here we sought to determine the binding site on PF4 of antibodies from patients with VITT. Using alanine-scanning mutagenesis5, we found that the binding of anti-PF4 antibodies from patients with VITT (n = 5) was restricted to eight surface amino acids on PF4, all of which were located within the heparin-binding site, and that the binding was inhibited by heparin. By contrast, antibodies from patients with HIT (n = 10) bound to amino acids that corresponded to two different sites on PF4. Biolayer interferometry experiments also revealed that VITT anti-PF4 antibodies had a stronger binding response to PF4 and PF4-heparin complexes than did HIT anti-PF4 antibodies, albeit with similar dissociation rates. Our data indicate that VITT antibodies can mimic the effect of heparin by binding to a similar site on PF4; this allows PF4 tetramers to cluster and form immune complexes, which in turn causes Fcγ receptor IIa (FcγRIIa; also known as CD32a)-dependent platelet activation. These results provide an explanation for VITT-antibody-induced platelet activation that could contribute to thrombosis.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Epitopes, B-Lymphocyte/immunology , Thrombocytopenia/chemically induced , Thrombocytopenia/immunology , Thrombosis/chemically induced , Thrombosis/immunology , Adult , Aged , Amino Acid Sequence , Antibodies/immunology , Binding Sites, Antibody , Female , Heparin/chemistry , Heparin/immunology , Heparin/metabolism , Humans , Kinetics , Male , Middle Aged , Models, Molecular , Platelet Activation , Platelet Factor 4/immunology , Receptors, IgG/immunology
8.
Mar Drugs ; 19(8)2021 Jul 22.
Article in English | MEDLINE | ID: covidwho-1325729

ABSTRACT

SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) is a novel coronavirus strain that emerged at the end of 2019, causing millions of deaths so far. Despite enormous efforts being made through various drug discovery campaigns, there is still a desperate need for treatments with high efficacy and selectivity. Recently, marine sulfated polysaccharides (MSPs) have earned significant attention and are widely examined against many viral infections. This article attempted to produce a comprehensive report about MSPs from different marine sources alongside their antiviral effects against various viral species covering the last 25 years of research articles. Additionally, these reported MSPs were subjected to molecular docking and dynamic simulation experiments to ascertain potential interactions with both the receptor-binding domain (RBD) of SARS CoV-2's spike protein (S-protein) and human angiotensin-converting enzyme-2 (ACE2). The possible binding sites on both S-protein's RBD and ACE2 were determined based on how they bind to heparin, which has been reported to exhibit significant antiviral activity against SARS CoV-2 through binding to RBD, preventing the virus from affecting ACE2. Moreover, our modeling results illustrate that heparin can also bind to and block ACE2, acting as a competitor and protective agent against SARS CoV-2 infection. Nine of the investigated MSPs candidates exhibited promising results, taking into consideration the newly emerged SARS CoV-2 variants, of which five were not previously reported to exert antiviral activity against SARS CoV-2, including sulfated galactofucan (1), sulfated polymannuroguluronate (SPMG) (2), sulfated mannan (3), sulfated heterorhamnan (8), and chondroitin sulfate E (CS-E) (9). These results shed light on the importance of sulfated polysaccharides as potential SARS-CoV-2 inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Aquatic Organisms/chemistry , Polysaccharides/pharmacology , SARS-CoV-2/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Binding Sites , Computer Simulation , Heparin/chemistry , Heparin/metabolism , Humans , Molecular Docking Simulation , Polysaccharides/chemistry , Protein Binding , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship , Sulfates/chemistry
9.
Angew Chem Int Ed Engl ; 60(29): 15870-15878, 2021 07 12.
Article in English | MEDLINE | ID: covidwho-1265369

ABSTRACT

Here we report that negatively charged polysulfates can bind to the spike protein of SARS-CoV-2 via electrostatic interactions. Using a plaque reduction assay, we compare inhibition of SARS-CoV-2 by heparin, pentosan sulfate, linear polyglycerol sulfate (LPGS) and hyperbranched polyglycerol sulfate (HPGS). Highly sulfated LPGS is the optimal inhibitor, with an IC50 of 67 µg mL-1 (approx. 1.6 µm). This synthetic polysulfate exhibits more than 60-fold higher virus inhibitory activity than heparin (IC50 : 4084 µg mL-1 ), along with much lower anticoagulant activity. Furthermore, in molecular dynamics simulations, we verified that LPGS can bind more strongly to the spike protein than heparin, and that LPGS can interact even more with the spike protein of the new N501Y and E484K variants. Our study demonstrates that the entry of SARS-CoV-2 into host cells can be blocked via electrostatic interactions, therefore LPGS can serve as a blueprint for the design of novel viral inhibitors of SARS-CoV-2.


Subject(s)
Antiviral Agents/metabolism , Heparin/metabolism , Pentosan Sulfuric Polyester/metabolism , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects , A549 Cells , Animals , Antiviral Agents/chemistry , Chlorocebus aethiops , Heparin/chemistry , Humans , Molecular Dynamics Simulation , Pentosan Sulfuric Polyester/chemistry , Polymers/chemistry , Polymers/metabolism , Protein Binding , Spike Glycoprotein, Coronavirus/chemistry , Static Electricity , Vero Cells
10.
Int J Biol Macromol ; 183: 203-212, 2021 Jul 31.
Article in English | MEDLINE | ID: covidwho-1201630

ABSTRACT

The world is currently facing a novel coronavirus (SARS-CoV-2) pandemic. The greatest threat that is disrupting the normal functioning of society is the exceptionally high species independent transmission. Drug repurposing is understood to be the best strategy to immediately deploy well-characterized agents against new pathogens. Several repurposable drugs are already in evaluation for determining suitability to treat COVID-19. One such promising compound includes heparin, which is widely used in reducing thrombotic events associated with COVID-19 induced pathology. As part of identifying target-specific antiviral compounds among FDA and world-approved libraries using high-throughput virtual screening (HTVS), we previously evaluated top hits for anti-SARS-CoV-2 activity. Here, we report results of highly efficacious viral entry blocking properties of heparin (IC50 = 12.3 nM) in the complete virus assay, and further, propose ways to use it as a potential transmission blocker. Exploring further, our in-silico analysis indicated that the heparin interacts with post-translational glycoconjugates present on spike proteins. The patterns of accessible spike-glycoconjugates in open and closed states are completely contrasted by one another. Heparin-binding to the open conformation of spike structurally supports the state and may aid ACE2 binding as reported with cell surface-bound heparan sulfate. We also studied spike protein mutant variants' heparin interactions for possible resistance. Based on available data and optimal absorption properties by the skin, heparin could potentially be used to block SARS-CoV-2 transmission. Studies should be designed to exploit its nanomolar antiviral activity to formulate heparin as topical or inhalation-based formulations, particularly on exposed areas and sites of primary viremia e.g. ACE2 rich epithelia of the eye (conjunctiva/lids), nasal cavity, and mouth.


Subject(s)
Drug Repositioning , Heparin/chemistry , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , COVID-19/prevention & control , COVID-19/transmission , Heparin/therapeutic use , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Drug Treatment
11.
Life Sci ; 277: 119508, 2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1185152

ABSTRACT

Antiviral strategies for viruses that utilize proteoglycan core proteins (syndecans and glypicans) as receptors should focus on heparan sulfate (HS) biosynthesis rather than on inhibition of these sugar chains. Here, we show that heparin and certain xylosides, which exhibit in vitro viral entry inhibitory properties against HSV-1, HSV-2, HPV-16, HPV-31, HVB, HVC, HIV-1, HTLV-1, SARS-CoV-2, HCMV, DENV-1, and DENV-2, stimulated HS biosynthesis at the cell surface 2- to 3-fold for heparin and up to 10-fold for such xylosides. This is consistent with the hypothesis from a previous study that for core protein attachment, viruses are glycosylated at HS attachment sites (i.e., serine residues intended to receive the D-xylose molecule for initiating HS chains). Heparanase overexpression, endocytic entry, and syndecan shedding enhancement, all of which are observed during viral infection, lead to glycocalyx deregulation and appear to be direct consequences of this hypothesis. In addition to the appearance of type 2 diabetes and the degradation of HS observed during viral infection, we linked this hypothesis to that proposed in a previous publication.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Biosynthetic Pathways/drug effects , Heparitin Sulfate/metabolism , Virus Internalization/drug effects , Animals , Drug Discovery , Glycosides/chemistry , Glycosides/pharmacology , Heparin/chemistry , Heparin/pharmacology , Humans , Virus Diseases/drug therapy
12.
J Nanosci Nanotechnol ; 21(4): 2075-2089, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1050421

ABSTRACT

In the current pandemic situation raised due to COVID-19, drug reuse is emerging as the first line of treatment. The viral agent that causes this highly contagious disease and the acute respiratory syndrome coronavirus (SARS-CoV) share high nucleotide similarity. Therefore, it is structurally expected that many existing viral targets are similar to the first SARS-CoV, probably being inhibited by the same compounds. Here, we selected two viral proteins based on their vital role in the viral life cycle: Structure of the main protease SARS-CoV-2 and the structural base of the SARS-CoV-2 protease 3CL, both supporting the entry of the virus into the human host. The approved drugs used were azithromycin, ritonavir, lopinavir, oseltamivir, ivermectin and heparin, which are emerging as promising agents in the fight against COVID-19. Our hypothesis behind molecular coupling studies is to determine the binding affinities of these drugs and to identify the main amino acid residues that play a fundamental role in their mechanism of action. Additional studies on a wide range of FDA-approved drugs, including a few more protein targets, molecular dynamics studies, in vitro and biological in vivo evaluation are needed to identify combination therapy targeted at various stages of the viral life cycle. In our experiment in silico, based mainly on the molecular coupling approach, we investigated six different types of pharmacologically active drugs, aiming at their potential application alone or in combination with the reuse of drugs. The ligands showed stable conformations when analyzing the affinity energy in both proteases: ivermectin forming a stable complex with the two proteases with values -8.727 kcal/mol for Main Protease and -9.784 kcal/mol for protease 3CL, Heparin with values of -7.647 kcal/mol for the Main protease and -7.737 kcal/mol for the 3CL protease. Both conform to the catalytic site of the proteases. Our studies can provide an insight into the possible interactions between ligands and receptors, through better conformation. The ligands ivermectin, heparin and ritonavir showed stable conformations. Our in-silica docking data shows that the drugs we have identified can bind to the binding compartment of both proteases, this strongly supports our hypothesis that the development of a single antiviral agent targeting Main protease, or 3CL protease, or an agent used in combination with other potential therapies, it could provide an effective line of defense against diseases associated with coronaviruses.


Subject(s)
Azithromycin/chemistry , COVID-19/enzymology , Coronavirus 3C Proteases/chemistry , Heparin/chemistry , Ivermectin/chemistry , Lopinavir/chemistry , Oseltamivir/chemistry , Ritonavir/chemistry , SARS-CoV-2/enzymology , Humans , Molecular Docking Simulation
13.
J Virol ; 95(3)2021 01 13.
Article in English | MEDLINE | ID: covidwho-1048660

ABSTRACT

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has caused a pandemic of historic proportions and continues to spread globally, with enormous consequences to human health. Currently there is no vaccine, effective therapeutic, or prophylactic. As with other betacoronaviruses, attachment and entry of SARS-CoV-2 are mediated by the spike glycoprotein (SGP). In addition to its well-documented interaction with its receptor, human angiotensin-converting enzyme 2 (hACE2), SGP has been found to bind to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we pseudotyped SARS-CoV-2 SGP on a third-generation lentiviral (pLV) vector and tested the impact of various sulfated polysaccharides on transduction efficiency in mammalian cells. The pLV vector pseudotyped SGP efficiently and produced high titers on HEK293T cells. Various sulfated polysaccharides potently neutralized pLV-S pseudotyped virus with clear structure-based differences in antiviral activity and affinity to SGP. Concentration-response curves showed that pLV-S particles were efficiently neutralized by a range of concentrations of unfractionated heparin (UFH), enoxaparin, 6-O-desulfated UFH, and 6-O-desulfated enoxaparin with 50% inhibitory concentrations (IC50s) of 5.99 µg/liter, 1.08 mg/liter, 1.77 µg/liter, and 5.86 mg/liter, respectively. In summary, several sulfated polysaccharides show potent anti-SARS-CoV-2 activity and can be developed for prophylactic as well as therapeutic purposes.IMPORTANCE The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV-2) in Wuhan, China, in late 2019 and its subsequent spread to the rest of the world has created a pandemic situation unprecedented in modern history. While ACE2 has been identified as the viral receptor, cellular polysaccharides have also been implicated in virus entry. The SARS-CoV-2 spike glycoprotein (SGP) binds to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we report structure-based differences in antiviral activity and affinity to SGP for several sulfated polysaccharides, including both well-characterized FDA-approved drugs and novel marine sulfated polysaccharides, which can be developed for prophylactic as well as therapeutic purposes.


Subject(s)
Antiviral Agents/pharmacology , Heparin/pharmacology , SARS-CoV-2/drug effects , Virus Internalization/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Drug Evaluation, Preclinical , Enoxaparin/chemistry , Enoxaparin/metabolism , Enoxaparin/pharmacology , Genetic Vectors/genetics , HEK293 Cells , Heparin/chemistry , Heparin/metabolism , Heparitin Sulfate/metabolism , Humans , Inhibitory Concentration 50 , Lentivirus/genetics , Molecular Structure , Molecular Weight , Polysaccharides/chemistry , Polysaccharides/metabolism , Polysaccharides/pharmacology , Protein Binding , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Transduction, Genetic , Virus Attachment/drug effects
15.
Med Hypotheses ; 144: 110288, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-811910

ABSTRACT

The angiotensin-converting enzyme 2(ACE-2) receptors with approx. 0.8% congestion in conjunctival surface, leads to increase susceptibility of Covid-19 transmission through ocular surface. It has been observed that prophylactic measures such as goggle or face shield are unable to offer complete protection against ocular transmission of SRS-CoV-2. Hence, it is hypothesized that topical ocular prophylaxis using biocompatible polymers with reported in-vitro and in-vivo evidence of ACE inhibition and antiviral activity appears to be a promising strategy for preventing ocular transmission of Covid-19 to healthcare workers. They are capable of binding to ACE-2 receptors which may provide highly potential trails to block virus entry to host cells. Further biopolymers imparting antiviral activities greatly improve their protective performance. They not only provide prolong protection but also are safe for long-term use. This article discusses the description of structural and functional attributes of ACE-2 to identify appropriate polymer with better binding affinity. Furthermore, potential polymers with appropriate concentration are suggested for evaluation through a hypothesis to consider them for Covid-19 implication.


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Eye/virology , Ophthalmic Solutions , Polymers/chemistry , Administration, Topical , Angiotensin-Converting Enzyme 2/chemistry , Biopolymers , Chitosan/chemistry , Dendrimers , Dextrans/chemistry , Heparin/chemistry , Humans , Hyaluronic Acid/chemistry , Personal Protective Equipment , Polysaccharides/chemistry , Risk Factors
16.
Int J Biol Macromol ; 163: 1649-1658, 2020 Nov 15.
Article in English | MEDLINE | ID: covidwho-792418

ABSTRACT

The SARS-CoV-2 spike glycoproteins (SGPs) and human angiotensin converting enzyme 2 (ACE2) are the two key targets for the prevention and treatment of COVID-19. Host cell surface heparan sulfate (HS) is believed to interact with SARS-CoV-2 SGPs to facilitate host cell entry. In the current study, a series of polysaccharides from Saccharina japonica were prepared to investigate the structure-activity relationship on the binding abilities of polysaccharides (oligosaccharides) to pseudotype particles, including SARS-CoV-2 SGPs, and ACE2 using surface plasmon resonance. Sulfated galactofucan (SJ-D-S-H) and glucuronomannan (Gn) displayed strongly inhibited interaction between SARS-CoV-2 SGPs and heparin while showing negligible inhibition of the interaction between SARS-CoV-2 SGPs and ACE2. The IC50 values of SJ-D-S-H and Gn in blocking heparin SGP binding were 27 and 231 nM, respectively. NMR analysis showed that the structure of SJ-D-S-H featured with a backbone of 1, 3-linked α-L-Fucp residues sulfated at C4 and C2/C4 and 1, 3-linked α-L-Fucp residues sulfated at C4 and branched with 1, 6-linked ß-D-galacto-biose; Gn had a backbone of alternating 1, 4-linked ß-D-GlcAp residues and 1, 2-linked α-D-Manp residues. The sulfated galactofucan and glucuronomannan showed strong binding ability to SARS-CoV-2 SGPs, suggesting that these polysaccharides might be good candidates for preventing and/or treating SARS-CoV-2.


Subject(s)
Coronavirus Infections/virology , Glucuronates/metabolism , Mannose/analogs & derivatives , Pneumonia, Viral/virology , Polysaccharides/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2 , Betacoronavirus/chemistry , Betacoronavirus/metabolism , Binding Sites , COVID-19 , Glucuronates/chemistry , Heparin/chemistry , Heparin/metabolism , Humans , Mannose/chemistry , Mannose/metabolism , Oligosaccharides/chemistry , Pandemics , Peptidyl-Dipeptidase A/metabolism , Phaeophyta/chemistry , Polysaccharides/chemistry , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Structure-Activity Relationship
17.
Cell ; 183(4): 1043-1057.e15, 2020 11 12.
Article in English | MEDLINE | ID: covidwho-756808

ABSTRACT

We show that SARS-CoV-2 spike protein interacts with both cellular heparan sulfate and angiotensin-converting enzyme 2 (ACE2) through its receptor-binding domain (RBD). Docking studies suggest a heparin/heparan sulfate-binding site adjacent to the ACE2-binding site. Both ACE2 and heparin can bind independently to spike protein in vitro, and a ternary complex can be generated using heparin as a scaffold. Electron micrographs of spike protein suggests that heparin enhances the open conformation of the RBD that binds ACE2. On cells, spike protein binding depends on both heparan sulfate and ACE2. Unfractionated heparin, non-anticoagulant heparin, heparin lyases, and lung heparan sulfate potently block spike protein binding and/or infection by pseudotyped virus and authentic SARS-CoV-2 virus. We suggest a model in which viral attachment and infection involves heparan sulfate-dependent enhancement of binding to ACE2. Manipulation of heparan sulfate or inhibition of viral adhesion by exogenous heparin presents new therapeutic opportunities.


Subject(s)
Betacoronavirus/physiology , Heparitin Sulfate/metabolism , Peptidyl-Dipeptidase A/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Betacoronavirus/isolation & purification , Binding Sites , COVID-19 , Cell Line , Coronavirus Infections/pathology , Coronavirus Infections/virology , Heparin/chemistry , Heparin/metabolism , Heparitin Sulfate/chemistry , Humans , Kidney/metabolism , Lung/metabolism , Molecular Dynamics Simulation , Pandemics , Peptidyl-Dipeptidase A/chemistry , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Protein Binding , Protein Domains , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization
18.
Cells ; 9(9)2020 09 05.
Article in English | MEDLINE | ID: covidwho-750713

ABSTRACT

Hybrid nanoparticles from lipidic and polymeric components were assembled to serve as vehicles for the transfection of messenger RNA (mRNA) using different portions of the cationic lipid DOTAP (1,2-Dioleoyl-3-trimethylammonium-propane) and the cationic biopolymer protamine as model systems. Two different sequential assembly approaches in comparison with a direct single-step protocol were applied, and molecular organization in correlation with biological activity of the resulting nanoparticle systems was investigated. Differences in the structure of the nanoparticles were revealed by thorough physicochemical characterization including small angle neutron scattering (SANS), small angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM). All hybrid systems, combining lipid and polymer, displayed significantly increased transfection in comparison to lipid/mRNA and polymer/mRNA particles alone. For the hybrid nanoparticles, characteristic differences regarding the internal organization, release characteristics, and activity were determined depending on the assembly route. The systems with the highest transfection efficacy were characterized by a heterogenous internal organization, accompanied by facilitated release. Such a system could be best obtained by the single step protocol, starting with a lipid and polymer mixture for nanoparticle formation.


Subject(s)
Biopolymers/chemistry , Lipids/chemistry , Nanoparticles/chemistry , RNA, Messenger/metabolism , Transfection/methods , Animals , Cell Line , Fatty Acids, Monounsaturated/chemistry , Female , Heparin/chemistry , Humans , Mice , Mice, Inbred BALB C , Optical Imaging , Particle Size , Quaternary Ammonium Compounds/chemistry , RNA, Messenger/chemistry
19.
Blood Purif ; 50(1): 28-34, 2021.
Article in English | MEDLINE | ID: covidwho-624949

ABSTRACT

In April 2020, the US Food and Drug Administration granted emergency use authorization for certain medical devices to be used in patients with coronavirus disease 2019 (CO-VID-19). This included extracorporeal blood purification devices. This narrative review will give a brief overview regarding some of the extracorporeal devices that could be used to treat COVID-19 patients, including the Seraph® 100 Microbind® Affinity Blood Filter, produced by ExThera Medical (Martinez, CA, USA), first licensed in the European Economic Area in 2019. The Seraph® 100 contains ultrahigh molecular weight polyethylene beads with end point-attached heparin and is approved for the reduction of pathogens from the bloodstream either as a single agent or as an adjunct to conventional anti-infective agents. Bacteria, viruses, fungi, and toxins have been shown to bind to the immobilized heparin in a similar way to the interaction with heparan sulfate on the cell surface. This binding is nonreversible and as such, the pathogens are removed from the bloodstream. In this review, we describe the pathophysiological basis and rationale for using heparin for pathogen removal from the blood as well as exploring the technology behind the adaptation of heparin to deprive it of its systemic anticoagulant activity. In addition, we summarize the in vitro data as well as the available preclinical testing and published clinical reports. Finally, we discuss the enormous potential of this technology in an era of increasing antibiotic resistance and high mortality associated with sepsis and consider the application of this as a possible treatment option for COVID-19.


Subject(s)
Anticoagulants/chemistry , Bacterial Infections/therapy , COVID-19/therapy , Hemoperfusion/methods , Heparin/chemistry , SARS-CoV-2/isolation & purification , Bacteria/isolation & purification , Bacterial Infections/blood , Binding Sites , COVID-19/blood , Humans
SELECTION OF CITATIONS
SEARCH DETAIL